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A quantitative thermodynamic approach is considered with the aim to describe the size-dependent
Langmuir–Hinshelwood mechanism and the two-step catalytic cycle. The general treatment takes into
account surface energy excess due to an intrinsic increase in chemical potential with size decrease as
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well as the changes in chemical potential upon adsorption. Numerical simulations as well as qualitative
analysis show that for catalytic reactions over nanoparticles not only the rates but also reaction orders
can vary depending on the size of nanoclusters. Comparison with experimental data is given.

© 2009 Elsevier B.V. All rights reserved.
inetics

. Introduction

Heterogeneous catalytic kinetics is an established field of
esearch not only in academia but also in industry, since kinetic
odels are routinely applied to modeling of large scale industrial

eactors.
Progress in physical methods of nanomaterials characterization,

nd computational methods as well as a discovery of remarkable
eactivity of specifically designed nanoparticles (e.g. gold) resulted
n the revival of the interest to the problem of structure sensitivity,
.e. dependence of the rate on particle size [1–5]. Such variations
re observed typically in the domain of 2–20 nm.

The dependence of turnover frequency per exposed (i.e. avail-
ble for catalysis) site as a function of the nanoparticle dimension
s given in Fig. 1.

It should be noted that structure sensitivity is a complex
henomenon [6]. Explanation of this phenomenon on a mech-
nistic level might involve quantum size effects, metastability
ano-structures under reactions conditions, defect sites, and
etal–support interface chemistry as well as other geometric (ratio

f sites with different coordination environment), electronic (ion-
zation potential, binding energies) or steric (changes in adsorption

ode with crystal size) properties. In addition particle size effects

n heterogeneous catalyzed reactions of e.g. hydrocarbons could be
elated to carbon deposition [7].

Size-dependent kinetics addressed on a quantitative level is
ery rarely described in the literature. It is interesting to note that

E-mail address: dmurzin@abo.fi.

381-1169/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.molcata.2009.09.016
size-dependent adsorption of nanocrystal surfaces was recently
discussed [8–11].

An explanation for size-dependent adsorption utilized in Refs.
[8–11] was based on the application of Laplace–Young equation,
which takes into account changes in the interface free energy,
namely an increase in the chemical potential of the active phase due
to excessive surface energy and an increase in the internal Lapla-
cian pressure with particle size decrease. According to the model
[11] the equilibrium adsorption constant increases as material size
decreases, which is in agreement with the experimental data [8] of
adsorption of some organic acids on anatase.

Thermodynamic analysis of the nanoparticle size effect on
adsorption equilibrium and rates was performed in Ref. [12]. This
type of approach to catalytic kinetics, when the rate is governed by
adsorption, can explain only a decrease in turnover frequency with
the particle size increase.

In order to explain another type of behavior, i.e. TOF increase
for large particle size, which corresponds to the occurrence of rate
(per mass) maximum, a concept of an increase in chemical poten-
tial upon adsorption with crystal size increase was utilized in Ref.
[13] without, however, explicit discussion about the differences
in these two approaches. Two-step and Christiansen sequences,
as well as Langmuir–Hinshelwood mechanisms were considered
[13], showing that for catalytic reactions over nanoparticles not
only the rates but also reaction orders can be different from those
obtained for large nanoclusters. Comparison with experimental

data for Fischer–Tropsch synthesis by cobalt supported on carbon
nanofibers, as well as for crotonaldehyde hydrogenation over gold
supported on TiO2 was utilized for illustrating applicability of the
thermodynamic analysis for the explanation of nanoparticle size
effect on kinetics.

http://www.sciencedirect.com/science/journal/13811169
http://www.elsevier.com/locate/molcata
mailto:dmurzin@abo.fi
dx.doi.org/10.1016/j.molcata.2009.09.016
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Fig. 1. Structure sensitivity plots.

In the present communication a treatment generalizing previ-
us considerations [13] is considered with an explicit discussion
n the differences between intrinsic and induced surface energy
xcess.

. Thermodynamics

The chemical potential �i(r) of a substance i differs from the
ulk value �∞ depending of the radius r [12]

i(r) = �∞ + ıint(r) (1)

here ıint is the intrinsic chemical potential increment due to
xcessive surface energy.

In the simplest treatment the chemical potential increment is
nversely proportional to the particle radius [12,14]

int(r) = ı′
int
r

(2)

here ı′
int is the size-independent term in intrinsic chemical poten-

ial increment, whose value according to Ref. [12] is twice as high as
Vm, the latter being the surface tension and the partial molar vol-
me of the substance forming the condensed phase, respectively.
ote that the surface tension of metals is within a range of 1–2 J/m2,
hile the molar volume of catalytically active metals is within a

ange of 6–10 cm3/mol.
The corresponding change in the Gibbs energy upon adsorption

s given by

Gads,∞ = �Gads(r) + ıint (3)

Since �Gads(r) < 0 and ıint is positive, the absolute value of
Gads,∞ is lower than that of �Gads(r). Such a case, discussed in Ref.

12], can be graphically visualized as in Fig. 2a. This figure is based
n an assumption that the excess of surface energy is relaxed upon
dsorption. The corresponding equation for adsorption kinetics was
erived in Ref. [12].

Keeping in mind that

Gr = −RT ln Kr; �G∞ = −RT ln K∞ (4)

he following equation can be easily obtained:

r = K∞ exp

(
ıint

RT

)
= K∞ exp

(
ı′

int
rRT

)
(5)

Such dependence implies lower adsorption constant for larger
articles in agreement with experimental data [8].

Making use of the relationship between thermodynamics and
inetics expressed by Brønsted equation k = gK˛ [15], where k is

he rate constant, K is the equilibrium constant, g and ˛ (Polanyi
arameter, typically equal to 0.5) are values, constant for a series
f reactions compared, it can be concluded that for larger particles
ower adsorption rate should be obtained explaining the decrease
n TOF with particle size, if the rate is determined by adsorption.
Fig. 2. Potential energy diagrams for adsorption in case of (a) intrinsic stress, (b)
induced stress, and (c) combination of induced and intrinsic stress.

Studies of the adsorption processes in porous materials showed
that adsorbent is not inert, since the deformation of the solid can
occur [16,17]. A somewhat similar concept was utilized [18] for
studies of adsorption of organic molecules on platinum nanoclus-
ters when the surface distortion energy, i.e. the energy difference
between the optimized clean surface and the optimized surface
structure upon adsorption was taken into account. Deformation of
nanoclusters [18] or porous solids [16,17] was considered to be
elastic, meaning that the surface free energy can be restored to its
bulk value when there is no stress imposed by adsorbed species. It
implies that

�j(r)ads = �∞,j,ads + ıext(r) (6)

where �j(r)ads is the chemical potential of an adsorbed substance
j, which depends on the radius r, �∞,j,ads is the corresponding bulk

value, ıext is the external (induced) chemical potential increment
upon adsorption.

The corresponding change in the Gibbs energy is expressed by

�Gads,∞ = �Gads(r) − ıext(r) (7)
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Following the same reasoning as above for �Gads(r) < 0 and pos-
tive values of ıint, the absolute value of �Gads,∞ is larger than that
f �Gads(r). Such approach, visualized by Fig. 2b, was utilized [13]
or thermodynamic analysis of adsorption and catalytic kinetics.
his assumption leads to larger adsorption constant and higher
dsorption rate for larger particles. It is interesting to note that
arger values of adsorption constants were detected [8] for adsorp-
ion of valeric acid on anatase in the case of significant increase in
he concentration of this acid.

The more general case is presented in Fig. 2c and takes into
ccount both intrinsic (i.e. excess of surface energy with parti-
le size increase) and induced (i.e. excess of surface energy due
o external stress exerted by adsorbed molecules) changes in the
hemical potential, leading finally to

Gads,∞ = �Gads(r) + ıint(r) − ıext(r) = �Gads(r) + �ı(r)

= �Gads(r) + �ı′

r
(8)

Note that the values of �ı(r) could be either positive or negative
epending on which type of surface energy excess is dominating,

nternal or external.

. Reaction sequences

Let us now consider the two-step mechanism with two kineti-
ally significant steps [19,20], which implies that one of the several
urface intermediates is the most abundant, while all the others are
resent on the surface at much inferior concentration levels:

1. Z + A1 ↔ ZI + B1
2. ZI + A2 ↔ Z + B2

A1 + A2 ↔ B1 + B2

(9)

here A1 and A2 are reactants, B1 and B2 are products, Z is the
urface site and I is an adsorbed intermediate.

The rate of the reaction in the case of ideal surfaces under steady-
tate conditions (v) is given by [21–23]

= k1PA1 k2PA2 − k−1PB1 k−2PB2

k1PA1 + k2PA2 + k−1PB1 + k−2PB2

= ω1ω2 − ω−1ω−2

ω1 + ω2 + ω−1 + ω−2

(10)

here PA1 , etc. are partial pressures (for gas-phase reactions) or
oncentrations (for liquid-phase reactions), ki – kinetic constants,
nd ωi – frequencies of steps (i.e. ω1 = k1PA1 , etc.).

It follows from the previous considerations (Eqs. (1)–(4) and
rønsted equation) that the rates constants for the first step are

1(r) = k1e˛1�ı′/r; k−1(r) = k−1e(˛1−1)�ı′/r (11)

here ˛ is the Polanyi parameter.
Since the overall Gibbs energy for the two-step sequence does

ot change in the presence of a catalyst �G = �G1 + �G2, it holds
or the second step

2(r) = k2e(˛2−1)�ı′/r; k−2(r) = k−2e−˛2�ı′/r (12)

Finally the following rate expression can be obtained:

(r) = (k1PA1 k2PA2 − k−1PB1 k−2PB2 )e(˛2+˛1−1)�ı′/r

k1PA1 e˛1�ı′/r + k2PA2 e(˛2−1)�ı′/r + k−1PB1 e(˛1−1)�ı′/r + k−2P

For the sake of clarity in order to demonstrate the influence of

he size of clusters on the reaction rate it can be assumed following
ef. [19] that ˛1 = ˛2 = ˛.

(r) = (k1k2PA1 PA2 − k−1k−2PB1 PB2 )e(2˛−1)�ı′/r

(k1PA1 + k−2PB2 )e˛�ı′/r + (k2PA2 + k−1PB1 )e(˛−1)�ı′/r
(14)
sis A: Chemical 315 (2010) 226–230

e˛2�ı′/r
(13)

Neglecting the impact of the reverse reaction by assuming that
one of the steps is irreversible (k−2 ≈ 0) one arrives at

v(r) = ω2e(˛−1)�ı′/r

1 + ((ω2 + ω−1)/ω1)e−�ı′/r
(15)

It should be noted that the Eley–Rideal mechanism can be
treated as a special case of two-step sequence [13].

Besides two-step sequence, rather often the
Langmuir–Hinshelwood mechanism is applied

1. A(g) + Z = ZA(ads)(quasi-equilibrium)
2. B(g) + Z = ZB(ads)(quasi-equilibrium)
3. ZA(ads) + ZB(ads) ⇒ C(g) + 2Z

A + B → C

(16)

where the surface reaction between the two adsorbed species is
considered to be the rate-determining step.

The reaction rate is expressed by

v = k3K1PAK2PB

(1 + KAP1 + K2PB)2
(17)

Similarly to Eq. (5), the following equations could be written:

K1,r = K1,∞e�ı′/r; K2,r = K2,∞e�ı′/r (18)

The Gibbs energy of the third step in mechanism (16) should
follow:

�G3,∞ = �G3(r) − 2�ı (19)

Resulting in (˛3 = ˛)

k3(r) = k3e(2˛−2)�ı′/r (20)

and leading finally to

v(r) = k3K1PAK2PBe2˛�ı′/r

(1 + (KAP1 + K2PB)e�ı′/r)2
(21)

which together with Eq. (14) will be utilized below for an analysis
of the nanoparticle size effect on kinetics. These equations express
the reaction rate per unit of surface (mol/s m2) while often experi-
mental data are reported per unit of catalyst weight, which implies
that [12]

V(r) = S′(r)v(r) = 4�r2

4/3�r3�
= 3

r�
(22)

where specific surface area S′(r) is in m2/g, and � is the density of
catalytic phase.

4. Dependence of kinetic regularities on the particle size

Rearranging Eq. (15) and taking into account (22) one arrives at

V(r) = ω1ω2e(2˛−1)�ı′/r

ω1e˛�/r + (ω2 + ω−1)e(˛−1)�ı′/r

3
r�

(23)
and

V(r) = ω2e(˛−1)�ı′/r

1 + ((ω2 + ω−1)/ω1)e−�ı′/r

3
r�

= p1e(˛−1)�ı′/r

1 + p2e−�ı′/r

1
r

(24)
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ig. 3. Dependence of reaction rate on the cluster size for the two-step sequence
Eq. (24)) at different values of �ı′ (˛ = 0.5, p1 = 1, p2 = 0.5).

In the case of �ı′ > 0 for large values of the nanoparticle size
1e˛�ı′/r � (ω2 + ω−1)e(˛−1)�ı′/r , which gives a first order in reac-

ant A1. If in addition ω2 	 ω−1 a zero order with respect to A2 is
bserved. On the contrary, when the size of clusters is small, it fol-
ows from Eq. (23) that ω1e˛�ı′/r 	 (ω2 + ω−1)e(˛−1)�ı′/r , i.e. a zero
rder in A1 and a first order in reactant A2 (when ω2 	 ω−1).

Numerical simulations for the two-step sequences (i.e. Eq. (24))
re given in Fig. 3 for some values of parameters, showing that
t high values of parameter �ı′ the influence of the nanoparticle
ize is less pronounced. The absolute values of the cluster size at
hich maxima are observed are in the region of 2–4 nm in line with

xperimental observations.
For the Langmuir–Hinshelwood mechanism when �ı′ > 0 and

eaction is carried out on large particles, it holds that 1 	 (KAP1 +
2PB)e�ı′/r and the reaction rate displays the first order in both
eactants with TOF diminishing as size increases. On small particles
he rate is given by

(r) = k3K1PAK2PB

(KAP1 + K2PB)2
(25)

hich shows independence of turnover frequency with the size as
ell as a fractional order or even negative orders in reactants.

Numerical analysis for Langmuir–Hinshelwood kinetic equa-

ion:

(r) = k3K1PAK2PBe2˛�ı′/r

(1 + (KAP1 + K2PB)e�ı′/r)2

3
r�

= p′
1e2˛�ı′/r

r(1 + p′′
2e�ı′/r)2

(26)

ig. 4. Dependence of reaction rate on the cluster size at different values of �ı′

˛ = 0.5, p′
1 = 1, p′′

2 = 0.5; Langmuir–Hinshelwood mechanism, Eq. (26)).
Fig. 5. Activity versus the average particle size for Fischer–Tropsch synthesis by
cobalt supported on carbon nanofibers. Experimental data: squares [27] and calcu-
lations according to the two-step sequence.

is presented in Fig. 4. For the sake of comparison, analysis for nega-
tive values of �ı′ is given in this figure as well, demonstrating less
pronounced dependence of the reaction rate on the nanoparticle
size in the case of surface stress induced by adsorbed species.

According to Eq. (26) for positive values of �ı′ the reaction rate
at low values of reactants partial pressures exhibits a decrease with
increasing nanoparticle size.

5. Comparison with experimental data

Dependence showing rate maxima were reported for oxidation
reactions over gold [24,25], hydrogenation of crotonaldehyde [26]
and Fischer–Tropsch synthesis over cobalt supported on carbon
nanofibers [27].

It was interesting to confirm if Eq. (24) could be used to explain
the dependence of the reaction rate on the cobalt particle size [27].
For the numerical data fitting the value of Polanyi parameter was
taken to be 0.5, which is often the case [22]. Fig. 5 demonstrates a
good description of the experimental data.

The positive value of �ı′ follows from the numerical data fitting.
It should be noted, however, that due to the structure of the model,
having two steps, one of which could be considered as adsorption
and another as desorption, an equally good fit (clearly with other
values of kinetic parameters) can be achieved under the assump-
tion of �ı′ < 0, which in fact was demonstrated in Ref. [13]. These
considerations indicate that the analysis of the nature of strain
present in a catalytic system cannot be unequivocally done for a
steady-state kinetics, unless the rate limiting step is adsorption or
desorption. Data on adsorption kinetics as a function of the crystal
size could serve as a basis for such discrimination.

More complicated dependence of thermodynamic functions on
the size could be obtained for solid–fluid interface [28], following
the original treatment of Tolman and Buff [29,30]. However, the
“reasonable” [28] approximation of inverse dependence of poten-
tial increment on the crystal radius is probably sufficient for the
purpose of kinetic modeling of particular catalytic reactions.

6. Conclusions
Concepts of surface thermodynamics, namely the surface
energy excess, were used in the present treatment to explain
structure-sensitive heterogeneous catalytic reactions. In the the-
oretical analysis intrinsic dependence of the chemical potential
on nanocrystal size as well as the changes in chemical poten-
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